Common fixed points and best approximants in nonconvex domain
نویسندگان
چکیده
The aim of the paper is to show the validity of results of Imdad [7] in a domain which is not necessarily starshaped and mappings are not necessarily linear. Our results also improve, extend and generalize various existing known results in the literature.
منابع مشابه
Firmly pseudo-contractive mappings and fixed points
We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space.
متن کاملCommon fixed points and invariant approximations of pointwise R - subweakly commuting maps on nonconvex sets
In this paper we prove a theorem giving sufficient conditions for the existence of common fixed points of pointwise R-subweakly commuting mappings on nonconvex sets. We apply this theorem to derive some results on the existence of common fixed points from the set of best approximation for this class of maps in the set up of metric spaces. The results proved in the paper generalize and extend so...
متن کاملExistence of common best proximity points of generalized $S$-proximal contractions
In this article, we introduce a new notion of proximal contraction, named as generalized S-proximal contraction and derive a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution. We furnish illustrative examples to highlight our results. We extend so...
متن کاملExistence of best proximity and fixed points in $G_p$-metric spaces
In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...
متن کاملStrong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008